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FLOW OF A MULTILAYER IDEAL INCOMPRESSIBLE AND HEAYY FLUID PAST A BODY* 

K.A. BEZHANOV dnd A.M. TER-KRIKOROV 

The two-dimensional steady flow of a layered fluid past a body with 
discontinuous stratification is disucssed. The number of layers in finite, 
and the channel which has a horizontal floor is open. To study the flow 
behind the body, a hypothesis on the possibility of approximating the 
velocity profile at the body boundary by that which arises in weightless 
flow (see /1,2/j is postulated. A boundary value problem for a second- 
order elliptic equation in combined Euler-Lagrange variables is formulated. 
The problem is formulated in a rectilinear band with a separation, and 
undertheconditions of consistency, on a finite number of parallel 
straight lines which correspond to the separation boundary. The introduction 
of a measure which gives rise to a monotonic density distribution in a 
non-perturbed flow, makes it possible tc reduce the boundary value problem 
to the symmetrization of Fredholm-type kernels. The linearized equation 
is solved by Fourier methods. 

The results obtained in /3/ are amplified: it is shown that for any 
specified Froude number, the corresponding homogeneous integral equation 
has only a finite number of positive eigenvalues to which the oscillation 
modes correspond. It is also shown that if the flow velocity is close to 
one of a denumerable set of propagation velocities of long-wave modes, 
the corresponding harmonic becomes stronger because of the resonance. 

1. Formulation of the problem. Consider the two-dimensional steady flow of an 
ideal incompressible heavy stratified fluid past a body T,: (1 I (< 1, ~J(I)c- y Q y,(r)), where 
y+(r) and y_(x)are known functions which define the body shape. 
the horizontal floor of the channel, and the Oy 

The Or axis is directed along 

figure). At the boundaries Pk (I) of the layer 
axis runs vertically upwards (see the 

T,+# the density p and the tangential 
component of the velocity \‘ suffer a discontinuity, and the pressure p and the normal 

l Prikl.htem.&?kban. ,49,3,392-400,1985 
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component of the velocity vector are continuous, TX: (- a < x< 7 ffi. y&-l (I) < y < y, (.,-I,. 
k = 1. 2. . ., n. 

Here and below, a prime denotes differen- 
tiationwithrespect to the corxespondingargument, 
IIlk (J) is the jump of the function f(r, y) when 
it passes through the k-th boundary ofdisconti- 

nuity,theconstants q,; correspond tothe discontinuity lines, to are the stramlines which 

For the set of domains T (see /3/j, the 
boundary value problem for the modified stream 
function has the form 

branch at the body, g, is the acceleration due to gravity, and 0(q) denotes the Bernoulli 
function. 

AS I--r--W, the one-dimensional unperturbed flow with the parameters 

is given. 
Here, 11 is the Lagrangian coordinate which defines the distance of the unpertrubed 

streamline from the O.,- axis, as .r+ - Cc, i is the *unit vector of the 0.i axis, and H 

denotes the depth of the un?ertusbed flow. 
It was shown in /3/ that the family of streamlines coincides with the family Q (.I * y) = 

const, and the density f,(y) = R (II) and the Berncalli function D(q)= cP,(tl) depend on '1 
only, and therefore they are constant on the stramlines. 

We will change to dimensionless variables taking the quantity H as the unit of length, 
and the numbers 

as units of the density and velocity. 
Let us take .I' and l) as inciependent, and !, (J. I)) as dependent variables. Then, t.hE 

band (- cc <x< - cc, 0<>) < 11, ccrresponds to the region of the flow, the straight line 
11 = 0 tc the channel floor, the strzigtt line 1~ = 1 to the free boundary of the flow, the 
straight lines *I=?h., i; = 1,2, .._. 11 - 1. 0 < ji1 < . . . < qn = l.to the discontinuity boccdaries, 
and the segment G,: ('2 / -<I, 'I = Q) to the body. We assiune that for 71>1 we are giver. 13 
fictitious flow of zero veicoity and ensity. 

The function y(r,ll) satisfies (see ,/3,4/) the equation 

T‘ne subscripts ,J _ a3c ~1 denote differentiation wit>: respect to the corresponding 
variable, and 7 is the reciprocal of the square of the Froude number. 

for j x / :’ f , the boundary concXtions on the body have the form 

Y (1. 'lo T 0) = '10 - y_ (l), y (.I-, '10 - 0) = 110 -t- g_ (I) (1.3) 

where y_(l) a& g-j%) are known functions which define the shape of the body, y_(r) &Q" (J). 
The functions y (r. 11) and p (2, 9) are continuous at the boundaries of the layers. ThlS 

leads to the consistency conditions 

I 

1 - PI: 
a’ i% ., - ah (11) - v\‘R(q)y 

I, 
(x)=0, k- I,?.. . ?I (1.4) 

-.l,i 

iy& (1) = 0. k --I 1, 2, . ** n 
The boundary condition on the channei floor, and the asymptotic condition at - w have 

the form 



303 

y (GO) = 0, lim Y (5, q) = q (1.5) C-.-P, 

The boundary conditions (1.3) greatly complicate the problem. We replace #em by a 
pair of simpler conditions. It follows from (1.3) that 

(ylo (5) = 8 (1 - I z I) Yo (4, Yo (4 = Y, (4 - Y- (4 (1.6) 

where g(z) is the Heaviside unit function, and IflO denotes the jump of the function f(r, n) 
in passing through the straight line n = no. 

We shall express the hypothesis on the possibility of approximating a velocity profile 
at the body boundary by the profile arising in a flow of a weightless fluid past a body. 
This hypothesis is justified if the density change in the layer comprising the body is small 
(a thin body, or a small stratification) /1,2/. For simplicity, we shall consider the case 

where the body is situated entirely in one layer. Then 

(1.i) 

PO (4 = [+ p*~*210(+) = - [P*lo(4 

where the parameters of the weightless fluid are marked by asterisks. 
Thus, we have Eq.(1.2), and the boundary condition (1.4)-(1.7), as a basis for our 

discussion. 

2. The fundamental integro-differential equation of the flow past 

The change 

y (I. n) = 11 i U'(I. n) 

makes it possible to obtain the following boundary value problem for the aggregate of 
domains G: 

l ( a2 01) ~+F,ic)-vvR(q)~.'~(=)=O, k=i,Z,. ,H 

ia’(q)(+ A Flu)‘o(z)=e(l - Izl)p0(5) 

Iwlo (I) = 8 (1 - 1 X i) yo (Z). W (I, 0) = 0 

[U],:(J)=O. !i=l.2,....12, lim K(I: q)=O 
I--X 

G=" 
k& 

Gi;\G,. G,::(-=<z<+-X), nk-,<71<nh-) 

a body. 

(2.1) 
the 

(2.2) 

(3.3) 

(3.4) 

(2,;) 

(1.6) 

The expressions for the non-linear operators F,w and F2w are given in /3/ but we shall 
not need them below. 

We will reduce problem (2.2)-(2.6) to solving an integro-differential equation (see /3/). 
For this we integrate (2.2) over the segment In, 11, and take advantage of the boundary 
conditions (2.3) and (2.4): 

a2(q)($-+ F,i~)=vC~(r,E)du(i)-_((i-_131)8(1--IlD)pu(=)- ~a2(i)~i$(l.I)tF*~)d4 (2.7) 
; i 

where r(q) is the Lebesgue-Stieltjes measure generated by the monotonic function I? (v), and 
dp (,I) = - dR @I). 

We divide (2.7) by a*(?]), and integrate the result over the segment [O,q], using the 
boundary conditions (2.5) and (2.6). As a result we obtain 
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If we invert the Fredholm operator on the left-hand side of f2.8), we shall obtain an 
integro-differential equation which does not contain the measure p(q) on its left-hand side: 

lX(J,rj)-i_ $al~)I.(rl.~,v)~(I.%)d%~ (Z.9) 

of~-izol)!YP~~)%l~l)~v)-Po~t)xz~llV~)~~u. 

xr(q> V)=e+nOf-v ir(?, %% v)+(%) 
r), 

The expressions for the non-linear operator 
in 131. 

@w, and the resolvent r(Q%, V) are given 
A resolvent has a denumerable setofsimple positive poles at the points 1: = ~1 to 

which correspond the critical velocities of the long-wave modes. 

3. The spectrum of the Fredholm integral equation. on putting @u:= in in 
(2.91, we obtain an integro-differential equation. To solve it we need to consider anadditiona 
Fredholm integral equation with a symmetrizing kernel: 

z(~,r)~i.~a~(I)T(?,%~v)r(i~v~aE (3.1) 

For 1;+=rj I all eigenvaltles P.,(m = 19 2. ..,f of equation (3.1) are simple and real, and 
the corresponding eigenfunctions are orthogonal with weight $(n). 

Theorem 1. For a specified value of the parameter c, the integral equation (3.1) has 
a finite number of eigenvalues, 

Pl-OOf. The integral Eq.!>.l) is eq‘aivalent to the following boundary value problem in 
eigenvalues for a second-order differential operator: 

d; 

i a? (I?\ -& - vR(t,)+ i:=i,:! . ..I ,n (3.31 

: (0, ;.i =. 0. j& = B. i. = 1. 2.. . .I n - i (3.iri 

where z= I: (Q. i.) without chanqin: the notation. 
The eiqenvalues h.li can be found ac fol?ows. First a Cauchy problem fax Eq.(3.2! in the 

segment io. rlll , with the initial conditions 

is sclved when ,, = il. 
Let this solutlor. be z1 (a. i... Then the Cauchp problem for (3.2) is solved in the segment 

I?,?. '121. and the initral conditicns for q = 'iI1 axe take: for I; = i from the consistency 
conditions (3.3) and (5.41, 

We denote this soluti:n b; ': (11, i.). Continuing this argument, we can construct the 
function 

z = :$; ('1. i‘:, q = ['],_1. nrf. k = 1, 2.. ., n 
which satisfies Eq.(3.2!, and a;_ 1 boundary conditions (3.3) and (3.4), with the exception of 
(3.3) for k=n. Fox i. to be an eigenvalue, and for r: (11. %r to be a corresponding 
eigenfunction, it is necessary and sufficient that i, shall be the solution of the equation 

n2il)~(l.i.)-srRil):(f,i,).-;O (3.6) 

Thus, the eigenvalues of !3.2! should be the solutions of Eq.(3.6). 
If we now assume that the positive eigenvalues of the integral Eq.t3.1) form an infinite 

sequence, then the boundary point of this sequence shoilld be at infinity. We shall show that 
this assumption leads to a contradiction. 

Let us multiply (3,2) by :. in. j.) , and integrate it over the segment i0.i;. Then, us;r,g 
boundary conditions !3.3) and (3.4), we obtain 
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hence 

Further, for O<q<l, let 

a Q 0 (rl) < i% R (1) > Y? IR’ (q) I < 6 (3.8) 

where a, fi,v and b are positive constants. 
Considering (3.81, for large positive b we have the following asymptotic form of the 

solution of Eq.(3.2) (see /5/): 

erp (I/i;V) z(n,A) =-- 
0 (?) (l-ro(l)), A-S= (3.9) 

Using the boundary conditions (3.31, (3.4), inequalities (3.8) and formula (3.9), we 
can obtain by induction the asymptotic solutions for all layers, 

zk (q, i.) = W-W exp (V'/x tli (1 + o (I)). qk_, f ? d nk k = 1.2.. .I a (3.10) 

where the constants ~6 do not depend on ).. 
Then for %,,, - f 00, from (3.8) and (3.10) we obtain the expression 

(3.11) 

The integral on the right-hand side has been discarded since its order equals erp(26;;J'i. 
Similarly, from (3.8) and (3.10) we have 

I, (i.)>, C,CXP (21'X)'k'X. c,> 0 

and from (3.11) and (3.12) there follows the inequality 

(I, (i.l I, 0.11 < Cl'7.. c > (1 

In expressions (3.11)-(3.13), the constants C,.C, and C do not depend on i.. 
Since, by assumption, the eigenvalues of the integral equation have a boundary 

infinity, a sequence (i.,) exists such that 

On substituting & into inequalities (3.7) and !3.13), as i.,,-- cc we obtain 

(&,, 
'7 '\.I < Cl ,.n. 

which is impossible. This proves the theorem. 
Let us number the eigenval. ties Of the integral Eq.(3.1) as follows: 

i., > i., > > x.1. > 0 > %v_1 > . 

The corresponding eigenfunctions 

2, ('1. Y). m = 1. 2.. . . .2’. ,v - 1. 

form a full orthonormal system. 

(3.14) 

For a single-layer model, the assertion of Theorem 1 was obtained earlier in /6/* (*see 
also the paper by Gorodtsov and Teodorovich, Cherenkov emission of internalwaves by uniformly 
moving sources, Preprint No.183, AK SSSR, Moscow, p.65, 1981). The exact solutions of (1.1) 
with a finite number of wave harmonics for the case where p'($)and a'($) depend linearly on + 
were obtained in /7/. 

(3.121 

(3.131 

point at 

4. Solution of the integro-differential equation. The integro-differential 
equation which corresponds to (2.9) is solved by the Fourier method. For this, we expand 
the functions x,(n, v)and x2(?. v)defined by the formulae in (2.9), in series according to 
system (3.14): 

(4.1) 



We seek the solution in the form 

where the unknown functions B,(rl satisfy the equation 

B,,” (2) t- L,,B, (T) = kf, (z) (4.2) 

f, (1) = 8 (i- I5 I) kwo (4 - Pm PO @)I 

The solution of (4.2)‘ which vanishes at --OCI together with its derivative, has the form 

B,,(~)=llfm(r)=J'IT;;; i f,(~)sinJ'~~(x--_E)& L,>O (4.3) 

-z 

B,(z)=B,(x)=q-~fm(E) ., 
exp (- J,‘il 1 2 - E I) d;T’ h, < 0 

Then, using the assertion of Theorem 1, we write the solution of the integro-differential 

equation as 

It follows from formulae (4.3) and (4.4) that in front of the bodqt the flow is disturbe6 

weakly, and the waves deVeloF downstream at once after the encounter with the body. 

To investigate the flak- behind the body we write formillae (4.3) and (4.4) for z >l, 

(4.11) 

m=~s--l -1 

1\1,= j).f,iF)COSf;;Ebi. L, = - j; f,(i) sin I'*- & fG (4.61 

Theoreni 2. I: the fcncticr.S Yo(J' and p,(z) are conti-uox on the segment [-_IJ],then 

the Following estimate of the functior. F@*tl,~), cnifcrx ir, I and r), hclds for z> + 

ZiJflzJ : 

Since for t>O we have ~sexp(-2~~!~<1~ 

Further, let 

I $0 b! I < A-, / PO (2) I< R, 5 > 1-k 211/t &L, I 

where K is a certain. positive COnSta?lt. Then, using inequalities 

have 

(4.9) 

(4.10) 

(4.61-14.10), from (4.5) we 
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K I A,+, I exp (--1/lTJ (+ - 0 + 2) c (aZ,+Bf+ 
(I)- 4.1 

The theorem is proved. 

Theorem 3. When X>Xs,>I, an estimate of the type (4.7) for any derivative of the 
function F(z,n,v) holds. 

The proof is similar to that of Theorem 2. 
The number x0 depends on the order of the derivative of F(r,q, v).’ Thus, when x 

increases the solution w&n) becomes smoother, and the peculiarities of the flow caused by 
small unevenness of the body are smoothed out as z--r +Oa. 

AS Z> 1+ Z/j,=\ , from formulae (2.11 and (4.5) and Theorem 2 there follows the 

asymptotic behaviour of the function y(z,n), uniform in x and n, 
N 

g(.r,q)=q+ ~~,((.II,rir~l'~~r~L,cos~~~2)1/~~~(~,Y)+ (4.11) 

0 (exp(- J/lhN_11 (3 - I)) 

( M, and L, are defined.by (4.6!). 

5. Asymptotic behaviour of the solution in the vicinity of the critical 
values of the parameter v, The critical values of the parameter v = vI, I = 1,2,..., 
were defined in /3/ as eigenvalues of the Fredholm equation with the symmetric kernel 

The critical velocities of propagation of the long-wave modes correspond to the critical 
values of vl, and the corresponding eigenfunctions (II of Eq.(S.l) determine their 
amplitudes. Also, the asymptctic form was established as T-+Y~ A 0, in this case the l-th 
term in (4.11) is the main term, and the forr-lae 

hold. 
Substituting (5.2) into (4.11, and ieaving only the main terms of the asymptotic forms as 

v\‘-+- v1 + 0, we obtain 

Denoting the size of the area occupied by the body by S, and the lifting force due to the 
velocity circulation by Q, using formulae (1.6) and (1.7) we arrive at the expression 

S= i vo(r)dl=!(~~.(~)-~_(~))dr (5.4) 
--! 

P=~~P~(~)~~=--~I~~~~(~)~~=~~P.(~)c.~(T~.I)~J=- f ~*(s)eo~(n~, y!ds 
8T 

where rD and no are the unit vectors of the tangent and normal to the body boundary .3T. 
Then from (4.21, (4.6) and (5.4) we find 

MI = a$ - BIQ, L, = 0 (W (5.5) 

Formula (4.11) becomes noticeably simpler. Using (5.21, (5.3) and (5.51, we obtain the 
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approxinate expression 

(5.6) 

is the estimate in (5.6). 
For Ix j< I, series (4.4) converges in the mean-square sense. If we use the asymptotic 

properties of the eigenvalues h, and the eigenfunctions z,,,(n,v) as m+ -I- CQ, then the standard 
technique of mathematical physics enables us to separate the singularities at the body 
boundary and to improve the convergence of the series, A mure detailed study of the near 
velocity field would make it possible to determine the distortions to the body shape by the 
hypothesis of the possibility of approximating the velocity profile at the body boundary by 
that of a weightless fluid flowing past. This question is not discussed inthepresent paper. 
Here we merely remark that in the arrangement discussed the streamline which corresponds to 
the body remains closed, and the area bounded by this streamline equals the area of the body. 
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ANISOTROPIC TURBULENCE IN THE FLOW OF AN INCOMPRESSIBLE 
FLUID BETWEEN PARALLEL PLANE WALLS' 

V.A. BABKIN 

It is shown that ir. the region adjacent to a solid wall a Newtonian fluid 
in turbulent flow can be regarded as an oriented Ericsson-Leslie fluid 
whose defining constants are subject to certain conditions. The 

logarithmic velocity profile is obtained from the solution found if the 
molecular viscosity is ignored, when the distance from the wall is small. 

1. Consider the confined turbulent flow of an incompressible Newtonian fluid between 
plane parallel walls in the absence of mass forces. The coordinate system consists of an 2 - 

axis directed along the flow, and a y-axis perpendicular to the walls. The wall equation is 
y = * h. 

The Prandtl semi-empirical theory of the mixing length, and numerous experiments show 

that in the vicinity of a solid wall the longitudinal averaged velocity u has the following 
logarithmic profile: 

(1.1) 
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